Melatonin entrains the restored circadian activity rhythms of syrian hamsters bearing fetal suprachiasmatic nucleus grafts.

نویسندگان

  • J Grosse
  • F C Davis
چکیده

A circadian pacemaker consists of at least three essential features: the ability to generate circadian oscillations, an output signal, and the ability to be entrained by external signals. In rodents, ablation of the suprachiasmatic nucleus (SCN) results in the loss of circadian rhythms in activity. Rhythmicity can be restored by transplanting fetal SCN into the brain of the lesioned animal, demonstrating the first two of the essential pacemaker features within the grafts. External signals, such as the light/dark cycle, have not, however, been shown to entrain the restored rhythms. Melatonin injections are an effective entraining stimulus in fetal and neonatal Syrian hamsters of the same developmental ages used to provide donor tissue for transplantation. Therefore, melatonin was used to test the hypothesis that SCN grafts contain an entrainable pacemaker. Daily injections of melatonin were given to SCN-lesioned hosts beginning on the day after transplantation of fetal SCN. Two groups that received melatonin at different times of day 12 hr apart each showed significantly clustered phases but with average phases that differed by 8.67 hr. Thus melatonin was able to entrain the restored circadian activity rhythms. In contrast to these initial injections, injections given 6 weeks after transplantation were unable to entrain or phase shift the rhythms. The results demonstrate that SCN grafts contain an entrainable circadian pacemaker. In addition, the results also indicate that the fetal SCN is directly sensitive to melatonin and, as with intact hamsters, sensitivity to melatonin is lost during SCN development.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of suprachiasmatic transplants on circadian rhythms of neuroendocrine function in golden hamsters.

Grafts of fetal tissue including the suprachiasmatic nucleus (SCN) of the hypothalamus restore locomotor rhythmicity to behaviorally arrhythmic, SCN-lesioned Syrian hamsters. We sought to determine whether such transplants also reinstate endocrine rhythms in SCN-lesioned hamsters. In Exp 1, SCN lesions interrupted estrous cycles in a 14 h light, 10 h dark photoperiod and locomotor rhythms in co...

متن کامل

Transient entrainment of a circadian pacemaker during development by dopaminergic activation in Syrian hamsters.

Maternal cues entrain a circadian pacemaker in fetal Syrian hamsters. These cues may act through dopaminergic activation of the fetal suprachiasmatic nucleus (SCN); injection of the dopamine D1 agonist SKF38393 to pregnant hamsters entrains activity rhythms of their pups and induces expression of c-fos in the fetal SCN. The aim of this study was to examine the ability of SKF38393 to entrain neo...

متن کامل

Circadian rhythmicity restored by neural transplant. Immunocytochemical characterization of the graft and its integration with the host brain.

It is well established that overt circadian rhythms are permanently disrupted following lesions of the hamster hypothalamic suprachiasmatic nucleus (SCN). In the present study, we show that implantations of brain grafts containing the fetal SCN reestablish circadian rhythms of locomotor activity in adult hamsters previously made arrhythmic by SCN lesions. The restoration of free-running rhythms...

متن کامل

Suprachiasmatic regulation of circadian rhythms of gene expression in hamster peripheral organs: effects of transplanting the pacemaker.

Neurotransplantation of the suprachiasmatic nucleus (SCN) was used to assess communication between the central circadian pacemaker and peripheral oscillators in Syrian hamsters. Free-running rhythms of haPer1, haPer2, and Bmal1 expression were documented in liver, kidney, spleen, heart, skeletal muscle, and adrenal medulla after 3 d or 11 weeks of exposure to constant darkness. Ablation of the ...

متن کامل

Transplanted suprachiasmatic nucleus determines circadian period.

The pacemaker role of the suprachiasmatic nucleus in a mammalian circadian system was tested by neural transplantation by using a mutant strain of hamster that shows a short circadian period. Small neural grafts from the suprachiasmatic region restored circadian rhythms to arrhythmic animals whose own nucleus had been ablated. The restored rhythms always exhibited the period of the donor genoty...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 18 19  شماره 

صفحات  -

تاریخ انتشار 1998